A Hybrid Iterative approach for solving the linear systems from interior point methods

Aurelio Oliveira - aurelio@ime.unicamp.br Carla Ghidini - carla.ghidini@fca.unicamp.br Marilene Silva - marilene@ime.unicamp.br

UNICAMP

April - 2015

- Interior Point Methods
- Linear System Solution
- Iterative Methods
- Preconditioners
- Implementation Issues
- Computational Results
- Concluding Remarks

Linear Programming Problem

Linear System Solution Computational Results Concluding Remarks

Interior Point Methods Interior Point Methods – Predictor Corrector Version

Linear Programming Problem

Primal Problem

 $\begin{array}{ll} \min & c^t x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$

Dual Problem

$$\begin{array}{ll} \max & b^t y \\ \text{subject to} & \mathcal{A}^t y + z = c \\ & z \geq 0 \end{array}$$

イロト イポト イヨト イヨト

3

Linear Programming Problem

Linear System Solution Computational Results Concluding Remarks

Interior Point Methods Interior Point Methods – Predictor Corrector Version

Optimality Conditions

$$\begin{array}{rcl} Ax-b&=&0\\ A^ty+z-c&=&0\\ XZe&=&0\\ (x,z)&\geq&0 \end{array}$$

1st BWIPM - 2015 A Hybrid Iterative approach for solving the linear systems from interior point

イロト イポト イヨト イヨト

ъ

Linear Programming Problem

Linear System Solution Computational Results Concluding Remarks Interior Point Methods Interior Point Methods – Predictor Corrector Version

Interior Point Methods

Affine Directions

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^{t} & I \\ Z^{k} & 0 & X^{k} \end{bmatrix} \begin{bmatrix} \Delta \tilde{x}^{k} \\ \Delta \tilde{y}^{k} \\ \Delta \tilde{z}^{k} \end{bmatrix} = \begin{bmatrix} r_{p}^{k} \\ r_{d}^{k} \\ r_{a}^{k} \end{bmatrix}$$

$$\begin{cases} r_p^k = b - Ax^k \\ r_d^k = c - A^t y^k - z^k \\ r_a^k = -X^k Z^k e \end{cases}$$

1st BWIPM - 2015 A Hybrid Iterative approach for solving the linear systems from interior point

イロト イポト イヨト イヨト

Interior Point Methods Interior Point Methods – Predictor Corrector Version

Interior Point Methods – Predictor Corrector Version

Search Directions

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^{t} & I \\ Z^{k} & 0 & X^{k} \end{bmatrix} \begin{bmatrix} \Delta x^{k} \\ \Delta y^{k} \\ \Delta z^{k} \end{bmatrix} = \begin{bmatrix} r_{p}^{k} \\ r_{d}^{k} \\ r_{c}^{k} \end{bmatrix}$$
$$r_{c}^{k} = \mu^{k} e - X^{k} Z^{k} e - \Delta \tilde{X}^{k} \Delta \tilde{Z}^{k} e$$

1st BWIPM - 2015 A Hybrid Iterative approach for solving the linear systems from interior point

イロト 人間 ト イヨト イヨト

-

Splitting Preconditioner Implementation Issues

Linear System Solution

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^t & I \\ Z & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} r_p \\ r_d \\ r_a \end{bmatrix}$$

Augmented System

$$\begin{bmatrix} -D^{-1} & A^{t} \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} r_{d} - X^{-1}r_{a} \\ r_{p} \end{bmatrix}$$
where $D = Z^{-1}X$.

Normal Equations System

$$(ADA^{t})\Delta y = AD(r_{d} - X^{-1}r_{a}) + r_{p}$$

Splitting Preconditioner Implementation Issues

Splitting Preconditioner

Preconditioned Matrix $K = -I_n + D^{-\frac{1}{2}}A^tG^t + GAD^{-\frac{1}{2}}$ where $G = H^t D_B^{\frac{1}{2}}B^{-1}$ and $H = [I_m \ 0]P$ *P* is a permutation matrix and $A = [B \ N]P$.

- Avoid Computing the Normal Equations System
- LU Factorization of B
- Dimension n
 - *m* Positive Eigenvalues
 - n m Negative Eigenvalues
- MINRES
- $G^t D^{-\frac{1}{2}} A^t = A D^{-\frac{1}{2}} G = I_m$

$$K = -I_n + U^t V^t + VU$$

where $UV = V^t U^t = I_m$

Splitting Preconditioner Implementation Issues

Normal Equations Version

• A = [B N]P;

$$ADA^t = BD_BB^t + ND_NN^t$$

$$D_{B}^{-\frac{1}{2}}B^{-1}ADA^{t}B^{-t}D_{B}^{-\frac{1}{2}} = I_{m} + D_{B}^{-\frac{1}{2}}B^{-1}ND_{N}N^{t}B^{-t}D_{B}^{-\frac{1}{2}}$$

- No Need to Compute ADA^t
- LU Factorization of B
- Dimension m
- Positive Definite
- Conjugate Gradient Method
- MINRES
 - Careful Implementation
 - Implicit Restart

Splitting Preconditioner Implementation Issues

Implicit Restart

$$\begin{aligned} \theta^{+}V_{j}Qe_{1} &= \theta V_{j}e_{1} - \tau AV_{j}e_{1} \\ \theta^{+}V_{j}Qe_{1} &= \theta V_{j}e_{1} - \tau (V_{j}H_{j} + f_{j}e_{j}^{t})e_{1} \\ \theta^{+}Qe_{1} &= \theta e_{1} - \tau (QR + \mu I)e_{1} \\ \theta^{+}Qe_{1} &= \theta e_{1} - \tau (\rho_{11}Q + \mu I)e_{1} \end{aligned}$$

hence $au = \frac{\theta}{\mu}$ and

$$\theta^+ = - heta rac{
ho_{11}}{\mu}$$
 and $x_0^+ = rac{1}{\mu}r$

- Compute the norm of the new residual without computing the residual itself
- *p* shifts at once obtaining a *k*-step
- Ritz values or harmonic Ritz values as shifts

イロト イポト イヨト イヨト

Splitting Preconditioner Implementation Issues

Implementation Issues

- Indefinite System
- Normal Equations System
- Finding a Permutation P
- Rules for Reordering the Columns of A
 - Diagonal value of D
 - $\|DAe_j\|_1$
 - $\|DAe_j\|_2$
- Compute LU Factorization to Determine the Columns of B
- Careful Implementation
- No Need to Compute ADA^t
- Works Fine near a Solution
- Designed for Last IP Iterations
- It is not Efficient far from a Solution
- First IP Iterations

Computational Results

- Computer: Intel Core i7, 2.93GHz, 16GB RAM, HD 1TB.
- Operational System: Linux 64Bits.
- Language: C.
- Cplex to read the problems.
- Splitting Preconditioner to accelerate the convergence of iterative methods (MINRES, CG and hybrid approach).
- Test Problems: 66 (NETLIB, QAPLIB, KENNINGTON, STOCHLP).

Computational Results

Augmented System

- PCG: does not achieve convergence.
- PMINRES: robust, achieve good results.
 - Without Refactorization: 24 problems solved.
 - With Refactorization: 25 problems solved.

Computational Results

PROBLEM	DIMENSION		PCG-EF		PMINRES-EF		HYBRID-EF	
	ROW	COLUMN	T(s)	lt.	T(s)	lt.	T(s)	lt.
afiro	23	47	0,00	9	0,00	9	0,00	9
agg	355	443	1,20	36	*	*	0,39	23
fit1d	24	1049	*	*	0,06	24	0,29	25
fit2d	25	10524	*	*	2,48	88	11,18	57
kb2	39	64	0,01	11	*	*	0	11
ken-07	1272	2448	0,60	16	0,27	16	0,54	16
nug05	210	225	0,70	8	0,03	8	0,07	8
nuğ07	602	931	5,19	12	4,66	14	2,72	12
pds-02	2499	7229	4,69	29	2,10	29	4,06	29
qap8	912	1632	18,73	10	*	*	9,79	10
recipe	64	150	0,02	11	0,00	11	0,03	11
sc50a	38	66	0,00	10	0,01	10	0,00	10
sc50b	37	65	0,00	9	0,00	10	0,00	9
sc105	83	141	0,01	10	0,01	10	0,01	10
sc205	164	276	0.21	18	*	*	0.04	11
scagr7	72	128	0,01	10	0,01	16	0,01	16

Computational Results

PROBLEM	DIMENSION		PCG-EF		PMINRES-EF		HYBRID-EF	
	ROW	COLUMN	T(s)	It.	T(s)	lt.	T(s)	lt.
scsd1	77	760	*	*	0,02	11	0,06	11
scsd6	147	1350	0,14	11	0,05	11	0,15	11
scsd8	397	2750	0,52	11	*	*	0,55	11
sctap1	284	644	0,23	19	0,08	19	0,2	19
sctap2	1033	2443	2,25	24	0,29	17	0,68	17
shell	392	1383	0,53	23	*	*	0,28	23
ship04l	317	1955	0,18	15	0,08	15	0,23	15
ship04s	241	1331	*	*	0,21	20	0,14	16
ship08l	520	3221	*	*	0,37	16	0,6	18
ship08s	326	1704	0,22	16	0,08	16	0,24	16
ship12l	687	4325	0,71	18	0,26	18	0,78	18
ship12s	417	2097	0,30	17	0,12	17	0,31	17
standgub	287	1165	0,57	22	0,24	22	0,54	22
standmps	395	1165	1,40	32	0,48	28	0,75	30
stocfor1	89	137	0,05	16	*	*	0,03	13

Computational Results

Running Time - Normal Equations without LU refactorization.

Computational Results

Number of iterations - Normal Equations without LU refactorization.

Computational Results

Normal Equations System without LU Refactorization:

- Problems solved: HA 97%, PMINRES 36% and PCG 39%.
- Running Time: HA faster than PCG and PMINRES.
- Iteration: HA needs less iterations to converge.

Computational Results

Normal Equations System without LU Refactorization:

- Problems solved: HA 97%, PMINRES 36% and PCG 39%.
- Running Time: HA faster than PCG and PMINRES.
- Iteration: HA needs less iterations to converge.

Computational Results

Normal Equations System without LU Refactorization:

- Problems solved: HA 97%, PMINRES 36% and PCG 39%.
- Running Time: HA faster than PCG and PMINRES.
- Iteration: HA needs less iterations to converge.

Computational Results

PROBLEM	DIMENSION		PCG-ER		PMINRES-ER		HYBRID-ER	
	ROW	COLUMN	T(s)	lt.	T(s)	lt.	T(s)	lt.
afiro	23	47	0,00	9	0,00	9	0,00	9
fit1d	24	1049	*	*	0,28	24	0,3	25
fit2d	25	10524	*	*	15,49	121	11,29	57
ganges	952	1348	1,52	20	*	*	1,39	20
Кb2	39	64	0,02	11	*	*	0	11
ken-07	1272	2448	0,61	16	0,75	16	0,54	16
nug05	210	225	0,08	8	0,09	8	0,07	8
nuğ06	372	486	0,42	9	0,52	9	0,43	9
nuğ07	602	931	4,66	14	*	*	2,71	12
pds-02	2499	7229	4,68	29	*	*	4,06	29
recipe	64	150	0,02	11	0,02	11	0,01	11
sc50a	38	66	0,00	10	0,00	10	0,00	10
sc50b	37	65	0,00	9	0,00	9	0,00	9
sc105	2234	6210	0,01	10	0,00	10	0,00	10
scagr7	72	128	0,01	10	0,01	16	0,01	16
scsd1	77	760	*	*	0,06	11	0,05	11

Computational Results

PROBLEM	DIMENSION		PCG-ER		PMINRES-ER		HYBRID-ER	
	ROW	COLUMN	T(s)	lt.	T(s)	lt.	T(s)	lt.
scsd6	147	1350	0,14	11	0,16	11	0,14	11
scsd8	397	2750	0,54	11	*	*	0,55	11
sctap1	284	644	0,25	19	0,26	19	0,2	19
sctap2	1033	2443	2,25	24	0,89	17	0,68	17
sctap3	1408	3268	66,2	91	*	*	11,25	20
share2b	93	159	0,11	19	0,12	19	0,04	12
shell	392	1383	0,57	23	0,94	24	0,28	23
ship04l	317	1955	0,24	15	0,27	15	0,23	15
ship08s	326	1704	0,25	16	0,28	16	0,24	16
ship12l	687	4325	0,8	18	0,87	18	0,77	18
ship12s	417	2097	0,33	17	0,37	17	0,31	17
standgub	287	1165	0,59	22	1,57	23	0,55	22
standmps	395	1165	0,79	30	1,7	29	0,74	30
stocfor1	89	137	0,04	15	0,36	54	0,02	13
truss	1000	8806	12,45	18	*	*	11,44	18

Computational Results

Running Time - Normal Equations with LU refactorization.

Computational Results

Number of iterations - Normal Equations with LU refactorization.

Computational Results

Normal Equations System with LU Refactorization:

- Problems solved: HA 100%, PMINRES 36% and PCG 42%.
- Running Time: HA faster than PMINRES and PCG.
- Iteration: HA needs less iterations to converge.

Computational Results

Normal Equations System with LU Refactorization:

- Problems solved: HA 100%, PMINRES 36% and PCG 42%.
- Running Time: HA faster than PMINRES and PCG.
- Iteration: HA needs less iterations to converge.

Computational Results

Normal Equations System with LU Refactorization:

- Problems solved: HA 100%, PMINRES 36% and PCG 42%.
- Running Time: HA faster than PMINRES and PCG.
- Iteration: HA needs less iterations to converge.

Concluding Remarks

- MINRES;
- Indefinite System;
- Hybrid Preconditioner Approach;
- Preconditioners Transition;
- Methods Transition;
- Robustness and Speed